Skip to main content

Associations between regional blood-brain barrier permeability, aging, and Alzheimer's disease biomarkers in cognitively normal older adults

Go to Publication »

PLoS One. 2024 Jun 5;19(6):e0299764. doi: 10.1371/journal.pone.0299764. eCollection 2024.

ABSTRACT

BACKGROUND: Increased blood-brain barrier permeability (BBBp) has been hypothesized as a feature of aging that may lead to the development of Alzheimer’s disease (AD). We sought to identify the brain regions most vulnerable to greater BBBp during aging and examine their regional relationship with neuroimaging biomarkers of AD.

METHODS: We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-enhanced MRI (DCE-MRI) to quantify Ktrans values, as a measure of BBBp, in 37 brain regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated measures ANOVA assessed the brain regions where OA showed greater BBBp than YA. In OA, Ktrans values were compared based on sex, Aβ positivity status, and APOE4 carrier status within a composite region across the areas susceptible to aging. We used linear models and sparse canonical correlation analysis (SCCA) to examine the relationship between Ktrans and AD biomarkers.

RESULTS: OA showed greater BBBp than YA predominately in the temporal lobe, with some involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected regions, there was no difference in Ktrans values based on sex or Aβ positivity, but OA who were APOE4 carriers had significantly higher Ktrans values. There was no direct relationship between averaged Ktrans and global Aβ pathology, but there was a trend for an Ab status by tau interaction on Ktrans in this region. SCCA showed increased Ktrans was associated with increased PiB DVR, mainly in temporal and parietal brain regions. There was not a significant relationship between Ktrans and FTP SUVR.

DISCUSSION: Our findings indicate that the BBB shows regional vulnerability during normal aging that overlaps considerably with the pattern of AD pathology. Greater BBBp in brain regions affected in aging is related to APOE genotype and may also be related to the pathological accumulation of Aβ.

PMID:38837947 | DOI:10.1371/journal.pone.0299764

Read More »